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ABSTRACT

The interesting properties of scale-free and small-world networks recently
observed have triggered the attention of the research community to the study
of real growing complex networks. In scale-free networks, most vertices are
sparsely connected, while a few vertices are intensively connected to many
others, indicating a “preferential linking” during growing. In small-world
networks, the average length of the shortest path between two randomly
chosen nodes is small. In this paper, we study the topological and dynamical
properties of the network of shareholders (NOS) in 11593 different companies.
Based on Graph Databases, we calculate all the well-known in the literature
topological and dynamical properties of a network along with centrality
measures of nodes of NOS, which quantify the role that a node plays in the
overall structure of NOS. We prove that NOS is both a scale-free and small-
world network. An understanding of NOS helps in predicting the emergence
of important new phenomena affecting portfolio management in general. Also,
this work reveals the fact that graph databases could serve as an efficient tool
for analyzing such network models for stock markets. To the best of the
authors’ knowledge, this is the first study calculating all the well-known in
the literature topological and dynamical properties for Market Investments
Networks, that is based on graph databases.

Keywords: scale-free networks, small-world networks, graph databases,
network of shareholders, network models for stock markets

JEL classification codes: C63, D83, G11

1. INTRODUCTION

Recent empirical studies (see Dorogovtsev and Mendes, 2003 and Sen and Chakrabarti,
2014 for a survey) of real growing complex networks, like WWW (Albert, Jeong and
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Barabási, 1999), showed that they are very compact networks, i.e., the average length of
the shortest path between two randomly chosen nodes is small. It is 19 for WWW, which is
of the order of the logarithm of its size. Due to the smallness of the average length of the
shortest path, these networks are referred to as “small-world” networks.

Also, empirical studies for various complex networks showed that the distribution of
the number of connections of a node has a fat-tailed form, i.e., a power-law distribution.
Thus, the distribution has no natural scale, as for instance the Poisson or exponential
distribution, due to the latter these networks are also referred to as “scale-free” networks.

The interesting topological properties of such scale-free networks have triggered the
attention of the research community to the study of real growing complex networks. In
scale-free networks most nodes are sparsely connected, while a few nodes are intensively
connected to many others, indicating a preferential linking (Barabási and Albert, 1999)
during growing. The latter means that while such a network grows, its new edges become
preferentially attached to nodes with a high number of connections.

It is shown that apart from WWW many complex natural or artificial networks are scale-
free networks, e.g. network of citations in the scientific literature (Redner, 1998), network of
metabolic reactions (Jeong et al., 2000), etc. Such networks have a unique stability against
failures and random damage, which is very important especially for biological and
communication networks. To destroy such networks, i.e., to decay to a set of small unconnected
components, one has to remove almost all their nodes or edges (Albert, Jeong and Barabási,
2000). Recently, specialized analysis techniques are applied to social networks and
communities for monitoring statistics and identifying influencers (graph analytics).

In order to investigate the “scale-free” and “small-world” properties of the NOS, we
analyze the connectivity, clustering coefficient, betweenness and chemical distance properties
of network topology along with the dynamic properties: connectivity distribution and load
distribution.

The presence of a power-law connectivity distribution makes the NOS an example of
scale-free networks (Barabási, Albert and Jeong, 1999), while an average length of the
shortest path between pairs of nodes, which is sharply peaked around its average value,
makes the NOS an example of small-world networks (Watts and Strogatz, 1998).

There is some related work in the literature analyzing some the topological properties
of NOS, (mainly centrality measures, i.e. out-connectivity, betweenness and closeness), in
order to investigate: interactions between companies (Yao, Evans and Christensen, 2019),
the control and wealth across markets (Vitali, Glattfelder and Battiston, 2011; Glattfelder
and Battiston, 2009), inter-firm interactions (Ohnishi, Takayasu and Takayasu, 2010), the
shareholder behavior (H.Li et al., 2016), the stock volatility (J.Li et al., 2016), the trade
size distribution (Jiang and Zhou, 2010), the shock transmission effects (D’Errico et al.,
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2009), the stock market concentration (Rotundo and D’Arcangelis, 2014), and the portfolio
optimization (Garlaschelli et al., 2005).

In this paper, we calculate all the well-known in the literature topological and dynamical
properties of a network, that are needed to prove the “scale-free” and “small-world”
properties of NOS. We also calculate the centrality measures of nodes in NOS, which
quantify the role that a node plays in the overall structure of a network. Thus, the proposed
calculating methodology can improve our understanding of the interactive relationship
between companies and shareholders and of developing of trading strategies.

The time complexity of calculating some of these properties is high. Thus, calculations
are based on Graph Databases (Needham and Hodler, 2019). Graph Databases besides
having an object-oriented thinking, they have a superior performance for querying related
data either big or small. A native graph has the so-called index-free adjacency property,
where each vertex maintains its neighbor vertices information only, and no global index
about vertex connections exists. Graph databases can support the representation of rich
and varied relationships between objects and the detection of patterns based upon these
relationships (Bechberger and Perryman, 2019). Thus, Graph Databases constitute an
excellent platform for queries on real time big data, since such a platform (graph compute
engine) is a technology that enables computational algorithms to be run against large datasets
(Robinson, Webber and Eifrem, 2015). To the best of the authors’ knowledge, this is the
first study calculating all the well-known in the literature topological and dynamical
properties for Market Investments Networks, that is based on graph databases.

In the rest of the paper, first we define the NOS (Section 2) and then we calculate its
properties (Section 3). In Section 4 we draw our perspectives and finally we conclude
(Section 5).

2. BUILDING THE NOS

NOS is constructed by using data from S&P 500. The S&P 500, or just the S&P, is a stock
market index that measures the stock performance of 500 large companies listed on stock
exchanges in the United States. It is one of the most followed equity indices, and many
consider it to be one of the best representations of the U.S. stock market. The S&P 500 is
widely regarded as the best single gauge of large-cap U.S. equities. There is over USD 9.9
trillion indexed or bench-marked to the index, with indexed assets comprising approximately
USD 3.4 trillion of this total. The index includes 500 leading companies and covers
approximately 80% of available market capitalization.

In particular, NOS is constructed by using a snapshot of S&P 500 corresponding to
March 2017. Data were collected by using the Bloomberg Professional service in a
Bloomberg Terminal. Companies were grouped to seven categories: Energy, Financial,
Information Technology, Health Care, Materials, Telecommunications Services, and
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Utilities. Within the initial dataset, a different label could be assigned to a company as an
investor and as a stock. Thus, we automatically detect and match the different labels.

After the preprocessing, NOS consists of 11593 nodes (N is the set of nodes) and
295989 edges (E is the set of edges).  A node represents a company, and a directed edge is
placed from a company-shareholder to each company-stock in which it has invested.

All experiments were run using the Python Programming Language and the Cypher
Graph Query Language on an i7 processor with 8GB of memory. To characterize both the
topological and the dynamical properties of the NOS, we used the nerworkx (Hagberg et
al., 2008) and powerlaw (Alstott et al., 2014) packages. The Graph is formed by the Neo4j
(Needham and Hodler, 2019) graph visualization capabilities.

3. TOPOLOGICAL PROPERTIES OF NOS

To characterize the topological properties of the NOS, we analyze the connectivity, the
clustering coefficient, the chemical distance and the betweenness measures.

The connectivity k
i
 of a node i is defined as the number of connections of this node

with other nodes in the network (k
i
 = |{(i, j) , (i, j) + E}|), while the average connectivity kavg

is defined as the average of k
i
 over all nodes in the network (kavg = �

i+N
k

i
/|N|). The in-

connectivity (kin
i
 = |{(j, i) , (j, i) �E}|) and out-connectivity (kout

i
 = |{(i, j) , (i, j) �E}|) for

directed networks are defined accordingly. Note that kin
i
 corresponds to portfolio

diversification while the sum of incoming link weights corresponds to portfolio volume.

Since each edge contributes to the connectivity of two nodes, in the general we could
have that k

avg
= 2|E|/|N| = 51.063, where |E| is the total number of edges and |N| is the total

number of nodes. For the NOS k
avg 

= 50.95, while kin
avg 

H + kout
avg =25.532. Thus, in

average each node has fifty connections, which is a small number compared with that of a
fully connected network of the same size (k

avg
 = |N| + 1 H+ 104). Internet also exhibits the

same behavior (Vázquez, Pastor-Satorras, and Vespignani, 2002). Therefore, the NOS are
far from being a random graph.

The generalization of the connectivity of a node, i.e., the number of its nearest neighbors,
is the number of its second nearest neighbors (k2

i
 = |{(s,t), (s,t)�E�(sa+i�(i,s)+E)}|), third

(k3i) and so on. The distance between a node and any of its m-nearest neighbors is m. In
NOS k2avg=28333.177 and k3avg=1767.847. Also, the maximum connectivity is found to be
6273 in NOS.

The average connectivity gives information about the number of connections of any
node but not about the overall structure of these connections, as the clustering coefficient.
The clustering coefficient ci (Watts and Strogatz 1998) of a node i (ci = ei/(ki(ki + 1)/2)) is
defined as the ratio between the number of connections (ei) among its ki neighbors and the
maximum possible connections among its ki neighbors, i.e., ki(ki + 1)/2. The average
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clustering coefficient cavg is defined as the average of ci over all nodes in the network
(cavg = �i+Nci/|N|). The clustering coefficient represents the “cliquishness” of the neighborhood
of a node, which is the extent of the mutual “acquaintance” of its neighbors.

Scale-free networks have much greater average clustering coefficient than that of the
classical random graphs with the same total numbers of nodes and connections (Dorogovtsev
and Mendes, 2003). For instance, the average clustering coefficient of Internet is 0.2, i.e.,
a relative difference about 300 from the corresponding classical random graph. In
comparative results presented in (Dorogovtsev and Mendes, 2003) for 37 different fittings
of data of different real networks, the values of average clustering coefficient are inside the
band 0.03<cavg<0.76 much greater that the corresponding classical random graph.

The maximum value of cavg is 1, corresponding to a fully connected network. For
random graphs (Watts and Strogatz, 1998; Bollobás, 1985), which are constructed by
connecting nodes at random with a fixed probability p, the clustering coefficient decreases
with the network size N as cavg_random = kavg /|N|. On the contrary, it remains constant for
regular lattices.

For the NOS cavg = 0.143, three orders of magnitudes larger than cavg_random = kavg /|N| �
10–4, corresponding to a random graph with the same number of nodes. Therefore, the NOS
are far from being a random graph.

The average chemical distance davg (Vázquez, Pastor-Satorras, and Vespignani, 2002)
is defined as the shortest path distance dij between two nodes i and j, averaged over every
pair of nodes in the network. The diameter of a network is defined in the literature as either
the average chemical distance or the length of the longest shortest path.

In comparative results presented in Dorogovtsev and Mendes, 2003, the values of
average chemical distance (average shortest path distance) is inside the band 2.32�davg�16
close to those for the corresponding classical random graph. Thus, the small-world property
does not depend crucially on the scale-free property of a network.

For the NOS davg = 2.943 and its diameter (longest shortest path) is 4. If the NOS could
be mapped into a two-dimensional regular lattice, we should observe davg+lattice � |N|1/2 � 107
<< 2.943. Thus, the NOS, as the Internet for instance (Vázquez, Pastor-Satorras, and
Vespignani, 2002), strikingly exhibits what is known as the “small-world” effect: in average
one can go from one node to any other in the system passing through a very small number
of intermediate nodes. This necessarily implies that besides the short local connections
which contribute to the large clustering coefficient, there are some hubs and backbones
which connect different regional networks, strongly decreasing the average chemical distance
(Vázquez, Pastor-Satorras, and Vespignani, 2002).

Closeness centrality (Borgatti, 2005) is defined as c(i)=1/�j�N dij, where dij is the shortest
path distance between nodes i and j. The maximum is reached by nodes connected to each
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of the others, while the minimum is reached by the first and last node of a chain network.
The larger the closeness of a node, the shorter the distances to other nodes. For directed
networks cin(i) = 1/�j�N dij and cout(i) = 1/�j�N dij are defined accordingly. We calculated the
c(i), cin(i) and cout(i) for every i�N. The results are shown in Fig. 1, presenting the number
of nodes per closeness centrality interval. Intervals are produced by dividing the value to
classes of equal length. The optimal histogram bin width has been calculated using Scott’s
rule (Scott, 1979). It is interesting that almost half of the companies are evaluated with a
near to zero closeness centrality, while a great portion of the other half is positioned in the
middle of the distribution.

Figure 1: Closeness Centrality Distribution

The betweenness bi (Newman, 2001) of a node i is defined as the total number of
shortest paths between any two nodes in the network that pass through the node i, while the
average betweenness bavg is defined as the average of bi over all nodes in the network. The
betweenness indicates whether or not a node is important in “traffic” on a network. Nodes
with a larger betweenness are more “influenced”.

For a star network, the betweenness takes its maximum value |N|(|N| – 1)/2 at the
central node and its minimum value |N| – 1 at the vertices of the star. Mapping the Internet
as an autonomous systems (AS) topology, i.e., a collection of subnetworks that are connected
together, it is shown in Vázquez, Pastor-Satorras, and Vespignani, 2002 that betweenness
for Internet is between 2|N| and 3|N|, which is quite small in comparison with its maximum
possible value |N|(|N| – 1) � 107.

For the NOS, bavg = 45,709 � 4|N| which is also quite small in comparison with its
maximum possible value |N|(|N| + 1) � 107.

The flow betweenness generalizes the notion of betweenness for valued networks. All
paths between nodes, not only shortest paths, are considered. The flow betweenness fbi,
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e.g. in D’Errico et al., (2009), of a node i is defined as the total number of maximum flow
paths between any two nodes in the network that pass through the node i. Formally: fb

i
 =

�
m<n

 mf
mn

 (i) , m,n � i, where mf
mn

 (i) is the maximum flow from node m to node n passing
through i. Thus, the flow betweenness measures the contribution of a node to all possible
maximum flows. We calculated the fbi, for every i+N, setting all flows to 1. The results are
shown in Fig. 2, presenting the number of nodes per flow betweenness interval. Intervals
are produced by dividing the value to classes of equal length. The great majority of the
companies are equally evaluated and belong to the same distribution class having a near to
zero flow betweenness.

Figure 2: Distribution of Flow Betweenness

The eigenvector centrality (Borgatti, 2005) is defined as the principal eigenvector of
the adjacency matrix defining the network. The eigenvector centrality a node is proportional
to the sum of the eigenvector centralities of its neighbors. We calculated the evi, for all
nodes. The results are shown in Fig. 3, presenting the number of nodes per eigenvector
centrality interval. Intervals are of equal length here too. The eigenvector centrality
distribution shows a power law behavior where the first three classes dominate (80%) the
rest to the right of the long tail. By excluding the last two classes, the distribution follows
a power law with an exponent ��=1.75

Networks consist of separate connected components. The statistics of the connected
components are related to percolation problems, as the size of the percolating cluster (the
giant connected component-GCC) and the distribution of the sizes of these connected
components (Dorogovtsev and Mendes, 2003). The relative size of the GCC indicates the
stability of a network. A network is not a unit organism if the GCC is absent.

Scale-free networks contain a complex set of interpenetrating giant components.
Excluding the GCC, the rest of such network includes finite-size disconnected components
(see Dorogovtsev and Mendes, 2003). The analysis presented in Broder et al., 2000 reveals



Journal of International Money, Banking and Finance, 2022, 3(1) : 1-...

8 © 2021 ARF Journals All Rights Reserved

that most (over 90%) of the approximately 203 million nodes in the subset of WWW used
during tests, form a single connected component if links are treated as undirected edges.
This connected web breaks naturally into four pieces. The first piece is a central core, all of
whose pages can reach one another along directed links — this “giant strongly connected
component” (SCC) is at the heart of the WWW. The second and third pieces are called IN and
OUT. IN consists of pages that can reach the SCC, but cannot be reached from it - possibly
new sites that people have not yet discovered and linked to. OUT consists of pages that are
accessible from the SCC, but do not link back to it, such as corporate websites that contain
only internal links. Finally, the TENDRILS contain pages that cannot reach the SCC, and
cannot be reached from the SCC. Perhaps the most surprising fact is that the size of the SCC
is relatively small, i.e., it comprises about 56 million pages. Each of the other three sets
contain about 44 million pages. Thus, all four sets have roughly the same size.

In NOS all nodes form a connected component (GCC) in the case of undirected
connections. For the directed graph, there are 2 strongly connected components (SCC)
with 22 members, and 1 strongly connected component with 50 members. Only a small
part of NOS is consisted of a strongly connected component. They are set of members that
own directly and/or indirectly shares in every other member (Vitali, Glattfelder and Battiston,
2011). The IN and OUT strongly connected components are both consisted of the same set
of 50 companies.

4. DYNAMICAL PROPERTIES OF NOS

To characterize the dynamical properties of the NOS, we analyze the connectivity and the
betweenness probability distributions. We show that the NOS structure is reflected in non-
trivial scale-free connectivity and betweenness correlation functions.

Figure 3: Eigenvector Centrality Distribution



Topological and Dynamical Properties of the Network of Shareholders in S&P 500 Companies...

© 2021 ARF Journals All Rights Reserved 9

The NOS has a fat-tailed distribution of connections. Thus, connectivity displays a
power-law distribution with an exponent � � 2.019. The power law in the connectivity
distribution P(k) = k-� characterizes the scale-free networks, however the exponent � is not
universal and depends on the detail of network structure. The exponent � for various networks
is in the range 2 <�� 3 (Goh et al., 2002; Vázquez, Pastor-Satorras, and Vespignani, 2002;
Redner, 1998).

In NOS, both the in-connectivity and out-connectivity also follow a power-law
distribution with an exponent � � 2.01 (setting parameter xmin to 28 after several tests) and
� � 1.99 (setting parameter xmin to 3 after several tests), respectively. Similar results have
been obtained also for the WWW (Broder et al., 2000; Barabási and Albert, 1999), where
� � 2.1 and � � 2.72 respectively. Thus, we observe that these connectivity, in-connectivity
and out-connectivity distributions exhibit an algebraic behavior and are characterized by
scaling exponents which are stationary in time.

Also, in NOS the betweenness distribution follows a power law with an exponent g »
2.815 (setting parameter xmin to 1 after several tests). Since the topological feature of a
network can be grasped more transparently using betweenness distribution, the latter is
extensively investigated in the literature. In Goh et al., 2002, scale-free networks can be
classified into only two classes, based on numerical measurements of the exponent g of
betweenness distribution. For the first class, the exponent is � � 2.2 and for the second
class the exponent is � � 2.0. It is shown that such different universal behaviors in the
betweenness distribution originate from different generic topological features of networks,
which in turn impose different behaviors. For instance, the resilience of networks under an
attack is different for each class: the networks of the second class are much more vulnerable
to the attack than those for the first class.

The clustering coefficient distribution is also an interest quantity. A definitive evidence
for a power-law behavior of clustering coefficient distribution is not described in the literature.
In Vázquez, Pastor-Satorras, and Vespignani, 2002, the distribution of the clustering coefficient
as a function of the node connectivity (ck_avg) is investigated for the Internet. In the case of
ck_avg the local clustering coefficient of each node ci is averaged over all nodes with the same
connectivity k. Also, in this case, measurements yield a power-law behavior with exponent g
= 0.75 ± 0.03, extending over three orders of magnitudes. This implies that nodes with a
small number of connections have larger local clustering coefficients than those with a large
connectivity. In NOS the ck_avg distribution also follows a power law with an exponent � � 2.5
(xmin 4). Finally, note that the distribution of the sizes of SCCs also obeys a power law with
an exponent � � 2.5 (Broder et al., 2000). This is true also for the NOS, where the latter
distribution follows a power law with an exponent � � 1.21.

5. DISCUSSION

Topological and dynamical properties of such real growing complex networks have important
direct consequences. An impressive property is their stability against failures and random
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damage. A network can be destroyed by transforming it to a set of small unconnected
clusters. Thus, to destroy a scale-free network one has to remove at random almost all its
vertices or edges (Albert et al., 2000; Cohen et al., 2000). Such resilience to failures is
obviously necessary for biological, e.g. for epidemic spreading (Pastor-Satorras and
Vespignani, 2001), and communication networks, e.g. for network breakdown (Cohen et
al., 2000). This property of NOS could help in investigating the propagation of economic
shocks. For example, NOS is robust against companies and shareholders variations and the
market volatility could be predicted (j.Li et al., 2016).

At the same time, another impressive property of scale-free networks is the absence of
an epidemic threshold (Pastor-Satorras and Vespignani, 2001). Thus, “diseases” may easily
spread within them. NOS is a compact network; thus, a large amount of its members is
expected to be “infected” by a significant change of the economic environment. For example,
this property of NOS could help in investigating how control tends to be dispersed among
shareholders (Glattfelder and Battiston, 2009).

Obviously, an understanding of NOS helps in predicting the emergence of important
new phenomena affecting portfolio management in general.

Thus, preferential linking is justified by the fact that investors are seeking to invest in
high liquidity companies (liquid stocks - a measure of liquidity, though not the best, is the
number of institutional investors which attracts) and high free-float (free float - percentage
of the company available to the investing public). As a result, one can explain the fact that
“the world is in control of a few important shareholders” (Vitali, Glattfelder and Battiston,
2011).

The “small-world” effect is justified by the fact that most of the sites belong to investors,
because the same investment companies mainly invest in “strong” stocks such as those
included in the S&P 500.

Clustering Coefficient is justified by focusing mainly on investment companies. It is
true that each one of them builds around most S&P 500 companies.

Betweenness is justified by the fact that we have few nodes in the network (S&P 500
companies) where we would expect many shortest paths to pass (investors).

Also, cross-shareholdings are represented as strongly connected components (SCCs)
in graph theory. They are sub-network structures where companies own each other directly
or indirectly through a chain of links. It means that they form in the graph cycles and are all
reachable by every other firm in the SCC. Institutions, such as the antitrust regulator, which
must guarantee competition in the markets, pay attention in this kind of ownership relations.
The companies, as well, set up cross-shareholdings for coping with possible takeovers,
monitoring and strategies reducing market competition.
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6. CONCLUSION

We proposed a network description (NOS) of a stock market (assets traded in and
corresponding shareholders). We proved that NOS is both a scale-free and small-world
network, since NOS is characterized by power-law distributions and a small average length
of the shortest path between pairs of nodes.

We calculated all the well-known in the literature topological and dynamical properties
of NOS, as well as the centrality measures of nodes in NOS. These properties are the
subject of fundamental financial issues, such as portfolio optimization, shareholder behavior,
stock volatility, shock transmission effects, corporate control, etc.

Since the time complexity of calculating some of these properties is high, the
calculations are based on Graph Databases. This work reveals the fact that graph databases
could serve as an efficient tool for analyzing such network models for stock markets. Such
analytics is path analysis that focuses on the relationships between the nodes, connectivity
analysis that focuses on the weight of the edges between nodes, community analysis that
focuses on the interactions between nodes and centrality analysis that focuses on the
relevancy of each node.
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